An effective and general method for the highly regioselective synthesis of 1-phenylpyrazoles from $\beta\text{-enaminoketoesters},$ tandem Blaise–acylation adducts \dagger

Young Ok Ko,^a Yu Sung Chun,^a Cho-Long Park,^a Youngmee Kim,^a Hyunik Shin,*^b Sungho Ahn,^c Jongki Hong^c and Sang-gi Lee*^a

Received 13th November 2008, Accepted 3rd December 2008
First published as an Advance Article on the web 26th January 2009
DOI: 10.1039/b820324e

An effective and general route for the regioselective synthesis of 1-phenylpyrazoles has been developed from β -enaminoketoesters prepared by tandem Blaise–acylation. This method is applicable to a very broad range of substrates, generating a diverse set of 3-aryl-5-alkyl, 3-alkyl-5-aryl, 3,5-diaryl, and 3,5-dialkyl substituted pyrazoles regioselectively. The dichotomous regioselective synthesis of isotopically discriminated 3-CD₃-5-CH₃ and 3-CH₃-5-CD₃ substituted pyrazoles showcases the power of this protocol.

Introduction

Pyrazole is embedded as a prominent sub-structure in numerous bioactive compounds exhibiting various activities1 such as antiinflammatory, 1a-c analgesic, 1d anti-bacterial, 1e and anti-cancer. 1f,g Moreover, recent blockbuster drugs verify pyrazole's importance as a pharmacophore.2 Accordingly, the pharmaceutical industry has a longstanding interest in its synthesis. Starting with the classical Knorr condensation³ of 1,3-dicarbonyl compounds with hydrazine, where regiocontrol becomes poor with monosubstituted hydrazines, various native synthetic methods have been developed with the aim of enhancing regioselectivity in the synthesis of 1,3,5-tri and 1,3,4,5-tetrasubstituted pyrazoles.⁴ Michael-type additions of monosubstituted hydrazines to alkynyl or olefinic ketones followed by intramolecular condensation⁵ and regiospecific 1,3-dipolar cycloaddition of the hydrazones with nitroolefin6 provides better control of the regioselectivity than that of the original Knorr procedure. The cross-coupling of 5-bromopyrazole derivatives with various nucleophiles⁷ or the sequential Suzuki coupling of pyrazole boronate derivatives generated by lithiation using a metal directing group8 also provide an alternative choice for enhanced regioselectivity. However, most of these methods have limited substrate-scope because either the synthetic method lacks precursors or is incompatible with reaction conditions. Particularly, regioselective synthesis of 1-aryl-3, 5-dialkyl pyrazoles having similar alkyl groups could not be accomplished using the aforementioned methods as shown in a recent report on the synthesis of N-arylation of 3,5-dialkyl pyrazoles. In this case, simple arylation of 3,5-dialkyl pyrazoles with 4-fluoronitrobenzene resulted in poor regioselectivity, a problem that was solved by the introduction of a chelating hydroxyalkyl group at the 3-position. However, this method required extra steps such as protection, deprotection, and removal of the chelating hydroxy group. Thus, the development of a general route for regiocontrolled synthesis of pyrazoles with broad substrate-scope is quite desirable.

Our own interest in the regioselective synthesis of pyrazoles stems from our recent finding on an efficient and general synthetic route to β -enaminoketoesters 1, which could be used as efficient surrogates of ynones and 1,3-dicarbonyl compounds in pyrazole synthesis. Although not fully recognized by synthetic chemists, an earlier work by Veronese et al. indicated that reactions of monosubstituted hydrazines with a β -enaminoketoester 1 (R¹ = Bn, $R^2 = CH_3$) afforded the corresponding pyrazoles 2 in a regioselective manner.10 Unfortunately, this protocol has not been extended further due to the limited availability of the β-enaminoketoesters 1, which are prepared from Knoevenagel condensation of β-ketoesters, commonly prepared by Blaise reaction with nitrile by using a stoichiometric amount of toxic tin(IV) chloride. In a similar work, Nielsen and Persson reported recently that monosubstituted hydrazine reacted with N-methoxy-N-methyl-β-enaminoketoesters, prepared by the reaction of ethylpropynoate with Weinreb amides, to afford the 3-carboxylated pyrazoles regioselectively. 11 During our ongoing study of the Blaise reaction,12 we developed a new general route for the synthesis of β-enaminoketoesters 1 removing this limitation completely. Quite recently we reported that the Blaise reaction intermediate, zinc bromide complexes of β-enaminoesters, could be activated in situ by the addition of a stoichiometric or catalytic amount of *n*-BuLi to allow chemoselective C2-acylation, which provides various β-enaminoketoesters 1.¹³ Although limited β-enaminoketoesters have been studied for the construction of the pyrazole ring moiety, 10,13 the full potential of β -enaminoketoesters 1 for the regioselective synthesis of pyrazoles 2 remained to be verified. In this work, we attempted to extend our tandem Blaise-acylation protocol to the regioselective synthesis of a variety 1-phenylpyrazoles 2,

^aDepartment of Chemistry and Nano Science (BK21), Ewha Womans University, Seoul 120-750, Korea. E-mail: sanggi@ewha.ac.kr; Fax: +82-3277-3419; Tel: +82-2-3277-4505

^bChemical Development Division, LG Life Sciences, Ltd./R & D, Daejeon 305-380, Korea. E-mail: hisin@lgls.com

^cCollege of Pharmacy, Kyung Hee University, Seoul 130-701, Korea

[†] Electronic supplementary information (ESI) available: Experimental procedures and characterization data for 1a–1k, 2a–2k and 3, and their ¹H NMR and ¹³C NMR spectra. Crystallographic data for 2a, 2b, 2e, and 2f. CCDC reference numbers 708928–708931. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/b820324e

where R¹ and R² are aryl/alkyl, alkyl/aryl, aryl/aryl, alkyl/alkyl groups including isotopically discriminated 3-CD₃-5-CH₃ and 3-CH₃-5-CD₃ substituted pyrazoles. A mechanism for the regioselective formation of pyrazole **2** has also been proposed.

Results and discussion

In our previous study, the β-phenyl-β-enaminoketoester 1a was synthesized in 82% yield, which reacted with phenyl hydrazine in the presence of a catalytic amount of p-toluenesulfonic acid to afford the corresponding 1,3-diphenyl-5-methyl pyrazole 2a regioselectively in 91% yield (entry 1, Table 1).13 To determine whether the opposite regioselectivity could be obtained with the β-enaminoketoesters 1b in 81% yield with tandem Blaisebenzovlation, the nitrile and anhydride partners were switched to acetonitrile and benzoic anhydride (entry 2, Table 1). In contrast to 1a forming a single isomer, an inseparable E/Z mixture of 1b was formed in 1:1 ratio. Reaction of the E/Z mixture of 1b with phenyl hydrazine provided 1,5-diphenyl-3-methyl-pyrazole 2b in 88% yield. There was no sign of the formation of its regioisomer 2a. In the ¹H NMR spectra, the methyl proton resonance peak for 2a ($\delta = 2.59$ ppm, s, 3H) appeared slightly upfield compared with that for **2b** ($\delta = 2.60$ ppm, s, 3H) indicating that the methyl group in 2a is located in the shielding region of the N-phenyl group. Later, their structures were determined unambiguously by X-ray crystallographic analysis (Fig. 1). In the same manner, dichotomous regioselectivity was obtained in the reaction of phenyl hydrazine with β-enaminoketoesters 1c (entry 3, Table 1) and 1d (entry 4, Table 1), having a sterically bulky sec-butyl alkyl group. 1c and 1d were prepared in high yields by Blaise-acylation of benzonitrile/isovaleric anhydride and isovaleronitrile/benzoic anhydride partners. Reactions of 1c and 1d with phenyl hydrazine afforded the corresponding 1,3diphenyl-5-sec-butyl pyrazole 2c (87%) and 1,5-diphenyl-3-secbutyl pyrazole 2d (85%) without any sign of the formation of other regioisomers. As in 2a, the methyl group of 2c ($\delta = 0.78$ ppm, d, J = 6.7 Hz, 6H) was observed in the shielding region of the N-

Table 1 Tandem Blaise-acylation and regioselective synthesis of 1-phenylpyrazoles 2a-2h

NH₂ O

Zn*

R^{1} -CN $\xrightarrow{then n-BuLi}$ R^{1}	$R^2 \xrightarrow{\text{PhNHNH}_2} R^1 / R^2$
$(R^2CO)_2O$	OEt EtOH CO ₂ Et
	1 2
Entry R ¹ R ²	1 (yield, $\%$) ^a 2 (yield, $\%$) ^a
1 Ph CH ₃	1a $(82)^b$ 2a $(91)^b$
2 CH ₃ Ph	1b $(81)^c$ 2b (88)
3 Ph sec-Bu	$1c (94)^b 2c (87)$
4 sec-Bu Ph	$1d (90)^c$ $2d (85)$
5 Ph 4-CF ₃ C	C_6H_4 1e (84) ^d 2e (83)
6 $4-CF_4C_6H_4$ Ph	$1f(89)^e$ $2f(88)$
7 CH ₃ CH ₃ CI	\mathbf{H}_{2} 1g (82) 2g (91)
8 CH3CH2 CH3	1h $(86)^c$ 2h (90)

^a Yield after silica column chromatography. ^b Data from reference 13. ^c Mixture of E/Z = ca. 1:1 determined by ¹H NMR. ^d Mixture of E/Z = ca. 1.2:1 determined by ¹H NMR. ^e Mixture of E/Z = ca. 2:1 determined by ¹H NMR.

phenyl group, and 0.25 ppm up-field shifted compared with that in 2d ($\delta = 1.03$ ppm, d, J = 6.7 Hz, 6H). We next investigated the regioselective synthesis of a set of 3,5-diaryl substituted pyrazoles 2e and 2f with sterically similar but electronically different phenyl and 4-trifluoromethylphenyl substituents to obtain information on the effects of substituent electronic properties on regioselectivity. The tandem Blaise-benzoylations of benzonitrile with 4trifluoromethylbenzoic anhydride provided 1e in 84% yield with a 1.2:1 ratio of E and Z isomers (entry 5, Table 1). Switching the Blaise-acylation partners to 4-trifluoromethylbenzonitrile and benzoic anhydride afforded 1f in 89% with E and Z in a 2:1 ratio (entry 6, Table 1). Reactions of the E/Z mixtures of βenaminoketoesters 1e and 1f with phenyl hydrazine showed perfect regioselectivity providing the corresponding 1,3,5-triaryl substituted pyrazoles 2e and 2f in respective yields of 83% and 88%. The structures of 2e and 2f were determined unambiguously by X-ray analysis (Fig. 1). Finally, this β -enaminoketoester-based approach was applied to the regioselective synthesis of unsymmetrical 3,5dialkyl substituted pyrazoles 2g (entry 7, Table 1) and 2h (entry 8, Table 1), having sterically and electronically less discernible methyl and ethyl groups at the 3- and 5-positions. The tandem Blaise-acylation with acetonitrile/propionic anhydride and propionitrile/acetic anhydride partners provided the corresponding βenaminoketoesters **1g** and **1h** in respective yields of 82% and 86%. Careful ¹H NMR analysis indicated that an E/Z (1:1) mixture of 1h was formed, whereas 1g was formed as a single isomer. To our delight, reactions of 1g and 1h with phenyl hydrazine afforded the corresponding pyrazoles 2g (91%) and 2h (90%) regioselectively in extremely high yield. ¹H NMR analysis indicated that as observed in **2c** and **2d**, the methyl protons ($\delta = 1.17$ ppm, t, J = 7.4 Hz, 3H) in the ethyl group of 2g were 0.14 ppm up-field shifted compared to those of **2h** (δ = 1.31 ppm, t, J = 7.5 Hz, 3H).

Based on these results, it would be reasonable to assume that the Michael-type addition of the unsubstituted nitrogen of phenyl hydrazine occurred at the β -carbon bearing an electronegative free amine group followed by intramolecular condensation. To elucidate the proposed reaction mechanism, we attempted to isolate the reaction intermediate, the conjugated addition adduct, without any success. However, the reaction of benzylamine with **1a** provided Michael addition product **3** in 64% yield, thus indirectly supporting the Michael addition—condensation mechanism (path a) (Scheme 1). The other possible pathway

Scheme 1 Aminolysis of **1a** and proposed pathway for regioselective pyrazole ring formation.

Fig. 1 X-ray structures of 1-phenylpyrazoles 2a, 2e, 2e, and 2f.‡

(path b), *i.e.* imine formation between the carbonyl group and hydrazine followed by ring-closure *via* a 5-endo-trig cyclization, would appear to be unfavorable since only one regioisomer was formed.

The highlight of our methodology is the regioselective synthesis of isotopically labelled pyrazoles 2j and 2k, which could only be accomplished through the discrimination of sterically and electronically indiscernible CH_3 and CD_3 groups (Scheme 2). To determine whether the two methyl groups can be differentiated in 1H NMR, the 3,5-dimethyl pyrazole 2i was synthesized first in 80% overall yield. We found that the two methyl protons resonated with slightly different chemical shifts ($\delta = 2.50$ and 2.52 ppm) (Fig. 2). For the synthesis of isotopically labelled β -enami-

noketoesters 1j and 1k, a set of the tandem Blaise–acylations was carried out with deuterated acetonitrile (CD₃CN)/acetic anhydride and acetonitrile/deuterated (CD₃CO)₂O combinations. Compared with the Blaise–acylation of acetonitrile with acetic anhydride for 1i (83%), acylation with deuterated acetic anhydride (CD₃CO)₂O providing 1j decreased the yield to 68%. The yield was more dramatically decreased in the Blaise–acylation of CD₃CN with acetic anhydride, providing 20% of 1k in 3 h, which could be ascribed to the secondary kinetic isotope effect. Fortunately, the yield was increased to 70% as the reaction time was prolonged to 12 h. Reactions of 1i, 1j and 1k with phenyl hydrazine afforded the corresponding 3,5-dimethylated pyrazoles 2i (97%), 2j (79%), and 2k (78%). We observed only one singlet resonance peak for methyl in the ¹H NMR spectrum of 2j, at $\delta = 2.50$ ppm (s, 3H). In contrast, the methyl proton peak for 2k was observed at $\delta = 2.52$ ppm

‡ CCDC numbers: **2a**:708928; **2b**:708929; **2e**:708930; **2f**:708931.†

Scheme 2 Regioselective synthesis of isotopically discriminated 3,5-dimethyl-1-phenylpyrazoles 2i, 2j, and 2k.

Fig. 2 ¹H NMR spectra of the CH₃ region in 2i, 2j, and 2k.

(s, 3H), indicating that the isotopically labelled pyrazoles 2j and 2k were formed in high regioselectivity (Fig. 2). These results clearly demonstrated that the β -enaminoketoesters 1, which can easily be prepared by the chemoselective tandem Blaise–acylation with broad substrate-scope, are the highly useful reagent of choice for the regioselective synthesis of pyrzoles 2.

Conclusion

We developed an effective route for the synthesis of pyrazoles regioselectively from tandem Blaise–acylation adducts, β-enaminoketoesters. This method is very broad in substrate scope, generating a diverse set of 3,5-aryl/alkyl, 3,5-alkyl/aryl, 3,5-diaryl, and 3,5-dialkyl substituted pyrazoles regioselectively. Moreover, the indiscernible CH₃ and CD₃ groups could be discriminated using our method leading to 3-CD₃-5-CH₃ and 3-CH₃-5-CD₃ substituted pyrazoles in a completely regiocontrolled manner. Isolation of the aminolysis adduct 3 suggested that the reaction of phenyl hydrazine with the β-enaminoketoesters proceeds regioselectively *via* Michael-type addition followed by dehydrative cyclization. The readily available diverse starting

materials for the tandem Blaise-acylation combined with the highly regioselective synthesis of pyrazoles provide high potential for diversity-oriented synthesis.

Experimental

General procedure for the synthesis of pyrazoles 2

To a solution of β -enaminoketoesters 1 (0.5 mmol) in absolute ethanol (1 mL) was added phenyl hydrazine (2.5 mmol) and p-toluenesulfonic acid (5 mg, 5 mol%) followed by stirring at room temperature for 1 h. The reaction mixture was refluxed for 1 h, and cooled to room temperature. After evaporation of solvent, the residue was dissolved in ethyl acetate, and the organic layer was washed subsequently with saturated aqueous NaHCO₃, 1 N HCl, and brine, and then dried with anhydrous MgSO₄. After concentration under reduced pressure, the residue was purified by column chromatography on silica gel to afford the product 2 with the yield in Table 1.

Acknowledgements

This work was supported by the Korean Research Foundation (KRF-2006-312-C00587).

Notes and references

- 1 (a) Z. Sui, J. Guan, M. P. Ferro, K. McCoy, M. P. Wachter, W. V. Murray, M. Singer, M. Steber, D. M. Ritchie and D. C. Argentieri, Bioorg. Med. Chem. Lett., 2000, 10, 601; (b) A. A. Bekhit and T. Abdel-Aziem, Bioorg. Med. Chem., 2004, 12, 1935; (c) C. Selvam, S. M. Jachak, R. Thilagavathi and A. K. Chakraborti, Bioorg. Med. Chem. Lett., 2005, 15, 1793; (d) R. Katoch-Rouse, O. A. Pavlova, T. Caulder, A. F. Hoffmann, A. G. Mukhin and A. G. Horti, J. Med. Chem., 2003, 46, 642; (e) A. Tanitame, Y. Oyamada, K. Ofuji, M. Fujimoto, K. Suzuki, T. Ueda, H. Terauchi, M. Kawasaki, K. Nagai, M. Wachi and J.-I. Yamagishi, Bioorg. Med. Chem., 2004, 12, 5515; (f) S. R. Stauffer, C. J. Coletta, R. Tedesco, G. Nishiguchi, K. Carlson, J. Sun, B. S. Katzenellenbogen and J. A. Katzenellenbogen, J. Med. Chem., 2000, **43**, 4934; (g) S. R. Stauffer, Y. Huang, C. J. Coletta, R. Tedesco and J. A. Katzenellenbogen, Bioorg. Med. Chem., 2001, 9, 141; (h) A. Guzmán-Pérez, R. T. Webster, M. C. Allen, J. A. Brown, A. R. Buchholz, E. R. Cook, W. W. Day, E. S. Hamanaka, S. P. Kennedy, D. R. Knight, P. J. Kowalczyk, R. B. Marala, C. J. Mularski, W. A. Novomisle, R. B. Ruggeri, W. R. Tracey and R. J. Hill, Bioorg. Med. Chem. Lett., 2001, 11, 803; (i) W. T. Ashton, R. M. Sisco, H. Dong, K. A. Lyons, H. He, G. A. Doss, B. Leiting, R. A. Patel, J. K. Wu, F. Marsilio, N. A. Thornberry and A. E. Weber, Bioorg. Med. Chem. Lett., 2005, 15, 2253.
- 2 (a) T. D. Penning, J. J. Talley, S. R. Bertenshaw, J. S. Carter, P. W. Collins, S. Docter, M. J. Graneto, L. F. Lee, J. W. Malecha, J. M. Miyashiro, R. S. Rogers, D. J. Rogier, S. S. Yu, G. D. Anderson, E. G. Burton, J. N. Cogburn, S. A. Gregory, C. M. Koboldt, W. E. Perkins, K. Seibert, A. W. Veenhuizen, Y. Y. Zhang and P. C. Isakson, J. Med. Chem., 1997, 40, 1347; (b) N. K. Terrett, A. S. Bell, D. Brown and P. Ellis, Bioorg. Med. Chem. Lett., 1996, 6, 1819; (c) M. J. Genin, C. Biles, B. J. Keiser, S. M. Poppe, S. M. Swaney, W. G. Tarpley, Y. Yagi and D. L. Romero, J. Med. Chem., 2000, 43, 1034.
- 3 L. Knorr, Ber., 1883, 2587.
- 4 (a) V. L. M. Silva, A. M. S. Silva, D. C. G. A. Pinto, J. A. S. Cavaleiro and J. Elguero, *Eur. J. Org. Chem.*, 2004, 4348; (b) S. T. Heller and S. R. Natarajan, *Org. Lett.*, 2006, **8**, 2675; (c) N. C. Duncan, C. M. Garner, T. Nguyen, F. Hung and K. Klausmeyer, *Tetrahedron Lett.*, 2008, **49**, 5766.
- 5 (a) Y. R. Huang and J. A. Katzenellenbogen, Org. Lett., 2000, 2, 2833; (b) A. R. Katritzky, M. Wang, S. Zhang, M. V. Voronkov and P. J. Steel, J. Org. Chem., 2001, 66, 6787; (c) B. C. Bishop, K. M. J. Brands, A. D. Gibb and D. J. Kennedy, Synthesis, 2004, 43; (d) S. Peruncheralathan, A. K. Yadav, H. Ila and H. Junjappa, J. Org. Chem., 2005, 70, 9644; (e) H.-L. Liu, H.-F. Jiang, M. Zhang, W.-J. Yao, Q.-H. Zhu and Z. Tang, Tetrahedron Lett., 2008, 49, 3805.

- 6 (a) X. Deng and N. S. Mani, Org. Lett., 2006, 8, 3505; (b) X. Deng and N. S. Mani, J. Org. Chem., 2008, 73, 2412.
- 7 X.-j. Wang, J. Tan and K. Grozinger, Tetrahedron Lett., 2000, 41, 4713.
- 8 M. McLaughlin, K. Marcantonio, C.-y. Chen and I. Davies, W., J. Org. Chem., 2008, 73, 4309.
- 9 X.-j. Wang, J. Tan and L. Zhang, *Org. Lett.*, 2000, **2**, 3107. 10 M. Manferdini, C. F. Morelli and A. C. Veronese, *Heterocycles*, 2000, **53**, 2775.
- 11 T. Persson and J. Nielsen, Org. Lett., 2006, 8, 3219.

- 12 (a) H. Shin, B. S. Choi, K. K. Lee, H.-w. Choi, J. H. Chang, K. W. Lee, D. H. Nam and N.-S. Kim, Synthesis, 2004, 16, 2629; (b) B. S. Choi, J. H. Chang, H.-w. Choi, Y. K. Kim, K. K. Lee, K. W. Lee, J. H. Lee, T. Heo, D. H. Nam and H. Shin, Org. Process Res. Dev., 2005, 9, 311; (c) J. H. Lee, B. S. Choi, J. H. Chang, H. B. Lee, J.-Y. Yoon, J. Lee and H. Shin, J. Org. Chem., 2007, 72, 10261; (d) J. H. Lee, B. S. Choi, J. H. Chang, S. S. Kim and H. Shin, Org. Process Res. Dev., 2007, 11, 1062.
- 13 Y. S. Chun, K. K. Lee, Y. O. Ko, H. Shin and S.-g. Lee, Chem. Commun., 2008, 5098.